EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus.
نویسندگان
چکیده
Neural unit activity and EEGs were recorded from inferior temporal regions of three rhesus macaques chronically implanted with "hyperdrives" holding 12 individually movable tetrodes. Recordings were made from each monkey over a period of approximately 3 mo, while the electrodes were moved by small increments through the hippocampus and neighboring structures. After recording, the monkeys were necropsied, and the brains were sectioned and Nissl-stained, permitting identification of individual electrode tracks. The results establish that hippocampal pyramidal cells are "complex spike cells," firing at overall average rates of approximately 0.3 Hz, with spike trains consisting of long periods of silence interspersed with bursts of activity. The results also establish that the monkey hippocampal EEG shows "sharp wave" events consisting of a high-frequency "ripple" oscillation ( approximately 110 Hz) together with a large slow-wave EEG deflection lasting several hundred milliseconds. The evidence suggests that monkey sharp waves are probably generated mainly in the CA1 region and that sharp waves are associated with an inactive/drowsy-or-sleeping behavioral state, which is also associated with increased hippocampal pyramidal cell activity and increased hippocampal EEG amplitude. The results of this initial study of ensembles of primate hippocampal neurons are consistent with previous studies in rodents and consistent with the hypothesis that theories and models of hippocampal memory function developed on the basis of rat data may be applicable to a wide range of mammalian species.
منابع مشابه
The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples.
Previously it has been shown that the hippocampus and neocortex can spontaneously reactivate ensemble activity patterns during post-behavioral sleep and rest periods. Here we examined whether such reactivation also occurs in a subcortical structure, the ventral striatum, which receives a direct input from the hippocampal formation and has been implicated in guidance of consummatory and conditio...
متن کاملHippocampal sharp wave bursts coincide with neocortical "up-state" transitions.
The sleeping neocortex shows nested oscillatory activity in different frequency ranges, characterized by fluctuations between "up-states" and "down-states." High-density neuronal ensemble recordings in rats now reveal the interaction between synchronized activity in the hippocampus and neocortex: Electroencephalographic sharp waves in the hippocampus were more probable during down-states than d...
متن کاملA neural mass model of CA1-CA3 neural network and studying sharp wave ripples
We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...
متن کاملThe effects of acute, sub-chronic and chronic psychical stress on the brain electrical activity in male rats
Introduction: Stress is a main factor influencing brain functions as revealed by the electroencephalogram (EEG) recordings. Moreover, different stress durations seemingly cause perturbations in brain waves and lead to mental disorders. This study investigates the effects of acute, sub-chronic and chronic stress on EEG in rats. Methods: Twenty-eight Wistar adult male rats were randomly all...
متن کاملThe effects of locus coeruleus electrical stimulation on brain waves of morphine dependent rats
Introduction: Opiates cause dependency via affect on central nervous system. Locus coeruleus nucleus is a main group of noradrenergic neurons in the brain that plays an important role in the expression of opioid withdrawal signs. During opioid withdrawal, brain waves change in addition to physical and behavioral signs. In this study, we examined the effects of locus coeruleus electrical sti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 2 شماره
صفحات -
تاریخ انتشار 2007